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Abstract—A theory is constructed for geometrically nonlinear behavior of a periodically laminated medium
for a class of planar deformation modes which are macroscopically homogeneous in the direction normalto
the material interfaces. The theory is used to study microbuckling and initial postbuckling behavior of the
medium under compression along the laminates. The results indicate that the bifurcation is of the stable
symmetric type so that geometrical imperfections in the form of initial waviness of the reinforcements are
not expected to reduce the microbuckling stress significantly.

INTRODUCTION

For a unidirectionally reinforced composite subjected to compression along the direction of the
reinforcements, a mode of failure that is of some interest is microbuckling which occurs due to
loss of uniqueness of the macroscopically homogeneous state of uniaxial compressive stress at
sufficiently high values of the applied load. Although microbuckling can occur either in the
extension mode or in the shear mode, where the appeliation refers to the predominant state of
incremental strain in the matrix material immediately after buckling, the shear mode of buckling
is of greater relevance for the practically significant cases in which the volume fraction of the
reinforcements is not too low.

In what follows we present an analysis of shear mode buckling as well as initial postbuckling
behavior of a unidirectional composite in compression. Specifically, we consider a periodically
laminated medium and assume that the constitutive equations of the two isotropic elastic
constituents are linear relationships between Piola-Kirchoff stress of the second kind and the
Lagrangian strain tensor, or, equivalently, that the respective strain energy functionals are
quadratic in the strain components. Thus, for this particular choice of stress and strain
measures, our theory contains only geometrical nonlinearity. Using this material model for the
constituents we derive a nonlinear continuum model for the composite similar to the effective
stiffness theory[1] for a restricted class of planar deformation modes and then present analyses of
buckling and initial postbuckling behavior of the composite subjected to compression. Evidently,
the object of initial postbuckling analysis is to determine, in the context of Koiter's theory of elastic
stability [2], the influence of initial geometric imperfections on the magnitude of microbuckling
stress. The initial postbuckling analysis also yieids a quantitative estimate of reduction in the
stiffness of the composite due to microbuckling.

The scope, emphasis and methodology of our study as outlined above are considerably
different from those of previous micromechanics-based investigations (e.g. [3-9]) of the general
problem of stability of a unidirectional composite in compression. Although in some of these
studies even such complicating yet important factors as fiber debonding[7] and material
nonlinearity have also been included, most are devoted to linear stability analysis and in, all of
them—except in the excellent treatment of buckling of imcompressible laminated media by
Biot[3}—a beam on some type of elastic foundation has been employed as a model for
composite behavior. In contrast to this type of material model, the so-called ideal fiber
reinforced composites containing densely distributed inextensible fibers have been considered
in the linear stability analysis by Kurashige{10] who allows the matrix to be compressible and in
the postbuckling analysis due to Kao and Pipkin[11] wherein matrix incompressibility has been
assumed. Our object in the sequel is to model the instability phenomenon on the basis of a
continuum theory which takes into account the composite microstructure and is a more
satisfactory description of material behavior than are the material models previously utilized.
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FORMULATION

We consider a periodically laminated medium consisting of alternate layers of reinforce-
ments and the matrix material, with perfect bonds assumed at the material interfaces. We also
make the assumption that, with the geometry and coordinate system shown in Fig. 1(a), the
composite is unbounded along the two coordinate directions x, and x;. In the following
development our interest is in the construction of a nonlinear theory of deformation in the
planar modes of the type shown in Fig. 1(b) which are associated with shear mode buckling of
the medium. These modes are homogeneous on the macroscale along the direction per-
pendicular to the laminates and consequently it is sufficient for our purposes to assume that the
displacements are periodic along this direction, with length of periodicity equal to the unit cell
dimension.

The model construction is based upon extremization of potential energy with respect to
appropriate displacement fields whose variation in the transverse direction is assumed in such a
form that it is possible to adquately represent the shear mode buckling pattern. We begin the
analysis by noting that in plane strain the average strain energy density of the composite for
periodic deformation is given by

=1
V= 2A [Lm Vido + L(z) V: dxz]’ (1a)
with

V, =5[Ci(e} + e}y + 2C 5 ey e+ 4CEEL), 1b)

(3SR

where A = A, + A, is one half of the length of the unit cell (see Fig. (1a)). Further, Q’ denotes

Xy
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(b)
Fig. 1. (a) Geometry and coordinate system, (b) Shear mode buckling pattern.
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the part of a typical unit cell occupied by the a constituent, with @ = 1 or 2 denoting the fiber
and the matrix, respectively, and C{ are appropriate functions of the Young's modulus and
Poisson’s ratio. The quantities e; in (1b) are the components of the Lagrangian strain tensor
given by the usual strain displacement relations.

To compute the composite strain energy density we assume the variation of the displace-
ment components within a unit cell to be of the form

@ = U(x))+ ¢(x))y2*In, (2a)
U = W(x)) + o(x))y/*/n, (2b)

where
y =1, y@=(A-x); —Asx,sA+24,, (2¢)

and n, denotes the volume fraction of the a constituent. The assumed displacement profiles
can be continued along the x, direction in such a manner as to yield kinematically admissible
and periodic displacement fields with the length of periodicity being the unit cell dimension.
Furthermore, these fields are consistent with the shear mode buckling pattern in which we are
interested and they are simplest such profiles.

Another set of approximations that we introduce is the one corresponding to the usual small
strains, moderate rotations approximation of the conventional nonlinear theories of plates and
shells. Thus we assume that the x; dependent functions that occur in (2) satisfy

(U',¢)=0(e"); (W', ¢)=0e), €)

where ( )'=d( )/dx,, and ¢ is a small parameter denoting the ratio of the unit cell half width,
A, to a macrodimension.

On substitution of the assumed displacement profile in the strain-displacement relations we
obtain

D= U +-’-':1) " +% W+ 0(ed), (4a)
e = jb—+ (1”-)2+ O(e"), (db)

eﬁ‘5>=—( ~"i+ W'+1(1¢)
+%[(U'+% ¢')¢+ W'¢] -;f:+ O(e"), (4c)

where the definition v, = (—1)*! has been utilized. In order to use (4) for calculation of the
average strain energy density, it is convenient to introduce the nondimensional quantities

(0’ a’)x9 T)=(Uo mxh l)/L, (53)
C§ = CPIEm, (5b)

where the composite is assumed to occupy the domain —/ < x; </, L is a macrodimension to be
identified with the wavelength of the buckling pattern and E,, is a mixture modulus to be
defined subsequently Equations (4, 5) can be used in (1) to obtain the strain energy density of
the composite in terms of (U, W, ¢, ) which shall be denoted by g in the sequel. We shall also
use Koiter’s notation to write the strain energy density of the composite as a sum of
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homogeneous functionals in g in the form

- 1 !
V(Q) = E(,,.)L f-l del
= Vi(q)+ Vi(g) + Vi(q), (6a)

wherein the various functionals, on carrying out the x,-integrations in (1), turn out to be

! 2 2
Va(q) = % L { E, (U'2 +5 ./,'2) +G, ( W ¢'2) + Eyé+ Gy +2D,¢U" + 2D2¢W’}dx,

(6b)
!

Vi(g)= % f [{E, U'W? + Dyp W + Dyl + Gy U' + 2Dy W' U'gr + 26, ww} dr, (6c)
]

V@) =% f ’%{E, W'+ Dy + 2Dt W'} dx. (6d)

In eqn (6b-d) we have dropped the overbars from the nondimensional quantities defined in (5)
for the sake of notational convenience and have used the definitions of composite moduli E,,
G, E,..., etc. given in the appendix.

Equations (6) together with contributions arising from the tractions at the boundaries can be
used to write the potential energy functional for the composite, from which the appropriate
differential equations for the basic variabies denoted by g and the boundary conditions can be
derived in a straightforward manner. In this sense the foregoing development is complete as far
as the construction of an approximate mathematical model for composite deformation is
concerned. The limitation of such a theory, of course, is that only those type of boundary
tractions are permissible which are macroscopically homogeneous in the direction normal to the
material interfaces. Thus, although it is possible to use the derived model to analyze the
composite even for the cases wherein the tractions or the displacements at the boundaries are
nonuniform but periodic with the period length being the unit cell dimension, the practically
significant situations in which the model is useful are those corresponding to uniform applied
boundary conditions. In particular, the theory can be utilized to analyze a laminated medium
subjected to uniform compression along the direction of the laminates, and this we shall now
do.

MICROBUCKLING ANALYSIS

If the composite is subjected to uniform compressive stress at the boundaries, its potential
energy is given by

I(q) = Vx(q) + Vx(g) + V(@) + A[ULL,, ™

where A is the magnitude of the applied compressive traction along the laminates applied at the
boundaries, nondimensionalized by the mixture modulus, and

[WiL=UW - U=. ®
The potential energy expression (7) shall now be used to obtain: (i) the fundamental equilibrium
path, (ii) bifurcation point on the fundamental path and (iii) an asymptotic representation of the
bifurcating equilibrium path.

Let the dependent variables along the fundamental path be denoted by go(A). If the
fundamental path is assumed to be linear, g, satisfies

Vi(go, 89) + A[8U)L, =0 9

where the first term represents the first variation of the functional V,. The variational statement
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(9) reduces to the boundary value problem

-E\Us-Dy¢o =0, (10a)
2
=5 Gigt+ DiUi+ Exgo =0, (100)
2
EUi+Digo=-1; TGigi=0 atx=z|, (10¢)

where the definition (6b) has been utilized. The corresponding differential equations for W, and
Yo are homogeneous and have only the trivial solution. Equations (10) yield the fundamental
path

Uy=-Ax/(E, - D}/ Ey), (11a)
¢o = AD]/E: = pA, (1 ]b)

From (l11a) it is apparent that (E, - E,*/E,) is the equivalent modulus for the composite for
compression along the laminates. Hence the modulus for scaling in (5b) can be chosen so as to
render the nondimensional mixture modulus unity. With this choice, the fundamental path
becomes, simply,

Up==-Ax, do="A, (12)

and A, the load parameter, becomes identical to the compressive strain in the composite.

It shouid be noted here that although the fundamental path (12) has been calculated by
neglecting the cubic and quartic functionals in the potential energy expression, it is readily
verified that the first variations V,,(qo, 8q) and V3,(go, 89) vanish, and, therefore, the calculated
equilibrium path is an exact solution of the governing equations.

We proceed to conduct the buckling and initial postbuckling analysis by writing the solution
of the equilibrium equations in the form

4=q+Q (13)
and caiculate the transition potential energy defined by
P(Q)=1l(qo+ Q) - I1(qo). (14

Let A, be a bifurcation point on the fundamental path, to be calculated subsequently. Then,
eqns (7) and (12)~(14) yield

P(Q) = PQ) + P5(Q) + PQ) +(A - A)P3(Q) (15)
where
PyQ) = V(Q)+A.PxQ), (16a)
P(Q)=V(Q); j=3,4, (16b)
and
PAQ)= Vx(Q, ad/A)

i
= _% | [E=sD)W+(Gs - vD)y?

+ 2Dy~ vG )y W' dx. (17
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Foliowing Koiter[2], the solution of the variational problem corresponding to (15) will be
obtained in the form

Q= aq,+a*q;+0[(A - A)a, @’), (18)

where a is the amplitude of the buckling mode and g, g, are solutions of the variational
problems

PH(QI,S‘I)=0, (19)
P42, 6) + Pay(qy, 69) = 0. 20)

Equation (19) is the homogeneous problem for the calculation of the buckling mode and A, the
value of the Joad parameter at bifurcation. In writing (20) we have used the resuilt of a
subsequent calculation which shows that the quantity Py(q,) vanishes so that bifurcation is of
the symmetric type in the sense of Koiter[2]. We complete the summary of Koiter’s general
results by noting that with (18), the transition potential energy of the composite can be written
solely in terms of the amplitude a according to

F(a)=a(A - A )A}+ a*A+ O(d%). v3))
In (21), which is valid for the special case of symmetric bifurcation, we have used

Ar=Pi(q), (222)
A,=P(q) +% Py (q1,92). (22b)

We shall use the above results for postbuckling analysis for the case in which the composite
dimension [ is so large that the end effects are negligible. Therefore, it can be assumed that
buckling occurs in a sinusoidal pattern whose wavelength can be used for scaling in (5a). As a
result, the integrations in the definitions (6b-d) have to be performed over one buckle
wavelength which is unity in the scaled system. With these modifications the boundary value
problem corresponding to (19) for calculation of bifurcation point and the buckling mode turns
out to be

=[Gy = A(E, = vD3)]W = [D; = A(Dy — vG) i =0, (23a)
2
—'63— E1+ 1[Gy~ Ac(Gs = vDI)y + [ Dy~ A(D; = vG)I W1 =, (23b)

with periodic boundary conditions at x = 0, 1. The corresponding equations for Uj, ¢, have only
the trivial solution.
If the solution of (23) is assumed as
W, = A cos kx, (24a)
Y =kBsinkx, k=2m, (24b)
we obtain from (23) the characteristic equation
AG+20g+h=0, (25)
where

f=(G;= vD)E, - vD3) - (D, — vGyY’, (26a)

2}2
8= (Dy=vGID, -3 (B~ D) (S B+ Gy)
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~3(Gy=¥DJG,, (26b)
212
h= Gl (s?k‘ E|+Gz)‘D12. (26(:)

With A, as a solution of the characteristic equation, (23)-(24) also yield

B = A[Gy~ A.(E; — vD)J/[D; - A(D, - vGy)). @n

In the sequel we shall use the normalization A =1.
To solve the second order problem (20) we first calculate the forcing term in this equation
which, on using (24), is given by

_ 12 [ [ Mk sin 2kx8U
PZI(qh 54)— sz; [+N(1 —cos ka)w]dx’ (28)
where
M= -% (E,~2D,B + G,B%), (29)
N=%(D,-—2G,B+D432). (29b)

We also note here that with U, = ¢, =0, the coefficient Ps(q,) vanishes so that bifurcation is of
symmetric type as mentioned before. From (20), (28) we obtain the result that W, and ¢, are
trivial and the other components of g, satisfy

-E,U3- Dy¢;+ Mk® sin 2kx =0, (30a)

2
—% G,44+ E;é,+ D,Uj+ N(1 - cos 2kx)k? =0, (30b)
With periodic boundary conditions, the solution of (30) is

U, = kR sin 2kx, (3la)
= KY[S cos 2kx - NIE3), G1b)
where
s =% QE,N + D,M) / [(E,+53 e‘k’G,)E, - D.’], (32)
and
IS 4,
R=1 [N (E,+ 3¢ k’G.)S] / D.. (32b)

We can use the resuits derived above to calculate the coefficients in the single degree of
freedom potential energy functional defined by (21), (22). Thus with (6) and (16), we have

i 2 -
Ag= it [6—14 (3E,+2D,B"+3D,B" +1 (’-“55—%-%)] = Ak,

(33a)



342 A. MAEWAL

A3= =4 KI(E, = vD;) - 2Dy~ vG)B + (Gy = vDOB)

Ak, (33b)

Although extremization of the function in (21) can be utilized to obtain the bifurcating path and
to answer questions about the stability of this path and about imperfection sensitivity, results of
the initial postbuckling analysis for symmetric bifurcation—as is the case here—are somewhat
more transparent if obtained in terms of reduction in stiffness of the structure. For this purpose
an analysis similar to Budiansky’s[12] yields

K, 1,

T =113 A7Kd A, (34)
which is the ratio of the composite stiffness before buckling to the stiffness immediately after it.
With the particular choice of scaling used in this problem, K is unity and, therefore, on using
(33), we obtain

Ko= 143 A21A, (35)
Our analysis of microbuckling of a periodically laminated medium within the context of the
approximate continuum model derived here is now complete. We have used the results to
conduct a parametric study for the following fixed parameters:

1 =03,»=045,n,=06, n,=04

where », denotes the Poisson’s ratio for the a constituent. The results of the calculations are
shown in Figs. 24.

In Fig. 2 the variation of critical strain at buckling with the ratio of the Young's moduli of
the constituents has been depicted for the limiting case of infinite buckle wavelength (e =0). It
is evident from the figure that the small strain approximation is valid only for relatively large
values of the modulus ratio. A consequence of this result is that for the technically significant
metal-matrix composites, microbuckling is likely to occur in the plastic range so that the theory
used here is no longer valid for such cases. The same results have been shown in Fig. 3, but

9 3 TBIOT—

100
gltel2)

Fig. 2. Variation of critical compressive strain with modulus ratio.
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Fig. 3. Variation of critical stress (scaled by composite shear modulus A* = 1/(n,/p, + naf ).
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Fig. 4. Variation of the ratio of postbuckling to prebuckling stiffness with modulus ratio.

with buckling stress normalized by ((n,/u,) + (n2/u2))™" where u, denotes the shear modulus.
Biot’s analysis[3] predicts this parameter to be unity for incompressible media, but the result is
seen to be a reasonable approximation for larger values of modulus ratio even without the
assumption of incompressibility.

From Fig. 4 it appears that substantial reduction in the stiffness of the composite along the
direction of laminates can occur due to microbuckling. However, since the ratio K/ K, of initial
postbuckling to prebuckling stiffnesses is in the range [0, 1], it follows from Budiansky's
analysis[12] that the bifurcation is of the stable symmetric type and, therefore, the composite is
not imperfection sensitive in that small initial geometrical imperfections are not expected to
lead to large decrease in microbuckling stress.

In order to exhibit the effect of finite buckle wavelength, the buckling and initial postbuck-
ling results have been shown for a fixed modulus ratio in Table 1 wherein ek is the
nondimensional wavenumber of the budkling mode. The trend for microbuckling stress is
similar to that of Biot's results and it may be concluded that a more realistic analysis which
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Table 1. Effect of buckle wavelength on buckiing and initial postbuck-
ling behavior (ratio of Young's moduli E'V/E® = 100)

ek A K/Ko

(Wavenumber)  (Critical Strain) (Ratio of Postbuckling-
to Prebuckling Stiffness)

0.00 0.0109 0.3253

0.05 0.0112 0.3253

0.10 0.0122 0.3253

0.20 0.0159 0.3252

0.30 0.0220 0.3250

takes into account the end effects in a composite of finite length in the direction of the
laminates would predict higher critical stress than the prediction based on infinite wavelength.
A somewhat interesting result is that the values of stiffness ratio given in Table 1 do not vary
significantly with the wave number of the buckling pattern.

CONCLUDING REMARKS

The resuits derived on the basis of an approximate continuum model of a periodically
laminated medium consisting of linear elastic constituents tend to indicate that compressive
microbuckling of the composite can occur at small strain only for those cases wherein the ratio
of the moduli of the constituents is relatively large. The analysis of initial postbuckling behavior
suggests that the composite is not imperfection sensitive so that the initial waviness of the
reinforcements is not expected to reduce the microbuckling stress significantly,
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APPENDIX
Relationships between composite constants and constituent material properties
The composite constants used in (6) and the later development are given in terms of Cif’~the constituent properties—
by the following:

E = Ciin + CRny, (AD)
Ey= Cny + CRim,, (AD)
Gy=C®n,+ C@in,y, (A3}
Gy =CQIny+ CRIna, (Ad)
Dlsci‘g_C's?r D2=CQ—CQ1 (AS)
i
Dy=Di+ 2Dy, D= (% - %f;’)» (A6)
CRLCR pe-CB.CR
D,—'z-‘g-%;zgﬂ. Dé Py + ' (A7)

G;= Dy +2D,. (A8)



